On a Suzuki Type General Fixed Point Theorem with Applications
نویسندگان
چکیده
The main result of this paper is a fixed-point theorem which extends numerous fixed point theorems for contractions on metric spaces and recently developed Suzuki type contractions. Applications to certain functional equations and variational inequalities are also discussed.
منابع مشابه
Suzuki-type fixed point theorems for generalized contractive mappings that characterize metric completeness
Inspired by the work of Suzuki in [T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008), 1861--1869], we prove a fixed point theorem for contractive mappings that generalizes a theorem of Geraghty in [M.A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604--608]an...
متن کاملA New Common Fixed Point Theorem for Suzuki Type Contractions via Generalized $Psi$-simulation Functions
In this paper, a new stratification of mappings, which is called $Psi$-simulation functions, is introduced to enhance the study of the Suzuki type weak-contractions. Some well-known results in weak-contractions fixed point theory are generalized by our researches. The methods have been appeared in proving the main results are new and different from the usual methods. Some suitable examples ar...
متن کاملSimultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications
In this paper, we first establish a new fixed point theorem for a Meir-Keeler type condition. As an application, we derive a simultaneous generalization of Banach contraction principle, Kannan's fixed point theorem, Chatterjea's fixed point theorem and other fixed point theorems. Some new fixed point theorems are also obtained.
متن کاملSome Fixed Point Results for the Generalized $F$-suzuki Type Contractions in $b$-metric Spaces
Compared with the previous work, the aim of this paper is to introduce the more general concept of the generalized $F$-Suzuki type contraction mappings in $b$-metric spaces, and to establish some fixed point theorems in the setting of $b$-metric spaces. Our main results unify, complement and generalize the previous works in the existing literature.
متن کامل$S$-metric and fixed point theorem
In this paper, we prove a general fixed point theorem in $textrm{S}$-metric spaces for maps satisfying an implicit relation on complete metric spaces. As applications, we get many analogues of fixed point theorems in metric spaces for $textrm{S}$-metric spaces.
متن کامل